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Abstract In this paper, by applying the Schauder fixed point theorem, the Leray–
Schauder nonlinear alternative and the Banach contraction principle, we establish
some sufficient conditions for the existence and uniqueness of solutions for a coupled
systemof nonlinear fractional differential equationswith fractional integral conditions,
involving the Caputo fractional derivative. Some examples are given to illustrate our
results.
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We consider a coupled system of nonlinear fractional differential equations (FDE for
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⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

C Dα1
0+u(t) = f1(t, u(t), v(t),C Dρ1

0+u(t),C Dρ2
0+v(t)), t ∈ [0, 1],

C Dα2
0+v(t) = f2(t, u(t), v(t),C Dρ1

0+u(t),C Dρ2
0+v(t)), t ∈ [0, 1],

u(ξ1) = 0, u(1) = I θ1
0+u(η1),

v(ξ2) = 0, v(1) = I θ2
0+v(η2),

(1.1)

where C Dαi
0+ and C Dρi

0+ denote the Caputo fractional derivative, I θi
0+ denotes Riemann–

Liouville fractional integral, 1 < αi < 2, fi ∈ C([0, 1] × R
4,R), 0 < ρi < 1, 0 ≤

ξi < 1, 0 ≤ ηi ≤ 1, θi > 0, i = 1, 2.
Fractional differential equations arise inmany engineering and scientific disciplines

such as the mathematical modeling of systems and processes in the fields of physics,
chemistry, electrodynamics of complex medium, control theory, etc. We refer the
reader to see [1–4]. Fractional differential equations are also regarded as a better
tool for the description of hereditary properties of various materials and processes
than the corresponding integer order differential equations. With this advantage, the
subject of fractional differential equations is gaining much importance and attention.
For some recent development on the topic, see [5–14] and the references therein.
Recently, Guezane-Lakoud and Khaldi [15] investigated the existence and uniqueness
of solution for a fractional boundary value problem with fraction integral condition

{
C Dq

0+u(t) = f (t, u(t),C Dσ
0+u(t)), t ∈ (0, 1),

u(0) = 0, u′(1) = I σ
0+u(1),

(1.2)

where f : [0, 1] × R
2 → R is a given continuous function,1 < q < 2, 0 < σ < 1.

The results allow the integral condition to depend on the fractional integral I σ
0+u which

leads to extra difficulties.
On the other hand, the study of a coupled system of fractional order is also very

significant because this kind of system can often occur in various applications. There
are a large number of papers dealing with the solvability of coupled systems of non-
linear fractional differential equations. For details, see [16–23] and the references
cited therein. In [24], the authors studied a coupled system of nonlinear fractional
differential equations with three-point boundary conditions

⎧
⎪⎪⎨

⎪⎪⎩

Dαu(t) = f (t, v(t), Dpv(t)), t ∈ (0, 1),
Dβv(t) = g(t, u(t), Dqu(t)), t ∈ (0, 1),
u(0) = 0, u(1) = γ u(η),

v(0) = 0, v(1) = γ v(η),

(1.3)

where 1 < α, β < 2, p, q, γ > 0, 0 < η < 1, α − q ≥ 1, β − p ≥ 1, γ ηα−1 <

1, γ ηβ−1 < 1. D is the standard Riemann–Liouville fractional derivative and f, g :
[0, 1] × R

2 → R are given continuous functions. By applying the Schauder fixed
point theorem, an existence result which improved the work in [16] was proved.

In [25], by applying some standard fixed point theorems, the existence results are
obtained for the coupled system of fractional differential equations with nonlocal
integral boundary conditions
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⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

C Dαu(t) = f (t, v(t), Dpv(t)), C Dβv(t) = g(t, u(t), Dqu(t)), t ∈ (0, 1),

au′(0) + u(η1) =
∫ 1

0
φ(s, v(s))ds, bu′(1) + u(η2) =

∫ 1

0
ψ(s, v(s))ds,

cv′(0) + v(ξ1) =
∫ 1

0
ϕ(s, u(s))ds, dv′(1) + v(ξ2) =

∫ 1

0
ρ(s, u(s))ds,

(1.4)

where 1 < α, β < 2, 0 < p, q < 1 and α − p − 1 ≥ 0, β − q − 1 ≥ 0.0 ≤
η1 < η2 ≤ 1, 0 ≤ ξ1 < ξ2 ≤ 1. f, g, φ, ψ, ϕ, ρ, are given functions satisfying some
assumptions. The form of the integral the authors consider here is quite general, which
involves some of known results.

In [26], the existence and uniqueness of solutions for a boundary value problem of
first-order fractional differential equations with Rieman-Liouville integral boundary
conditions is studied

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

C Dα
0+u(t) = f (t, u(t), v(t)), t ∈ [0, 1],

C Dβ

0+v(t) = g(t, u(t), v(t)), t ∈ [0, 1],
u(0) = γ I p0+u(η), 0 < η < 1,

v(0) = δ I q0+v(ξ), 0 < ξ < 1,

(1.5)

where C Dα
0+ and C Dβ

0+ denote the Caputo fractional derivative, I p0+ , I q0+ denote
Riemann–Liouville fractional integral, 0 < α, β < 1, f, g ∈ C([0, 1] × R

2,R),
and p, q, γ, δ ∈ R.

From above, we can see a fact, although the coupled system of fractional boundary
value problems have been investigated by some authors, FDE (1.1) are seldom con-
sidered and present more general argument. The main features of the present paper are
follows: First, compared with [16–26], the system we discuss here is coupled not only
in the differential system but also through the nonlinear terms f1, f2, which involved
two unknown functions u, v and the fractional derivative of unknown functions u, v,
and the case is more complicated and difficult than the nonlinear terms involved only a
unknown function and the fractional derivative of a unknown function. Secondly, com-
pared with the above mentioned documents, what we discuss here allow the integral
condition to depend on the fractional order integral I σ

0+u which covers the multi-point
boundary conditions and integer order integral boundary conditions. It is worth men-
tioning that integral boundary conditions are encountered in population dynamics,
blood flow models, cellular systems, heat transmission, plasma physics, etc.. They
come up when values of the function on the boundary are connected to its value inside
the domain. Sometimes, it is better to impose integral conditions because they lead to
more precise measure than the local conditions. Furthermore, what we discuss here
allow u(ξi ) = 0, 0 ≤ ξi < 1 which is a more general condition, instead of u(0) = 0 in
the literature [15–22,24]. Finally, compared with [16,18,20,23–26], the methods and
some growth conditions (see Theorem 3.2) what we use here are of some difference.

The rest of the paper is organized as follows. In Sect. 2, we present preliminaries and
several lemmas. In Sect. 3, solvability of nonlinear FDE (1.1) is formulated and proved
by using a variety of methods. In Sect. 4, some examples are given to demonstrate the
main results.
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2 Preliminaries

For the convenience of readers, in this section,wepresent somedefinitions and lemmas.
More information on fractional calculus can be found in, for example, [2,3].

Definition 2.1 If f ∈ ACn([a, b],R) andα > 0, then theCaputo fractional derivative
of order α is given by

C Dα
a+ f (x) = 1

�(n − α)

∫ x

a

f (n)(t)

(x − t)α−n+1 dt,

where n = [α] + 1, [α] denotes the integer part of number α.

Definition 2.2 If f ∈ C([a, b],R) and α > 0, then the Riemann–Liouville fractional
integral of order α is given by

I α
a+ f (x) = 1

�(α)

∫ x

a

f (t)

(x − t)1−α
dt.

Lemma 2.1 For α > 0, the fractional differential equation C Dα
0+u(t) = 0 has a

general solution

u(t) = c1 + c2t + c3t
2 + · · · + cnt

n−1,

where ci ∈ R, i = 1, 2, . . . , n, and n = [α] + 1.

Lemma 2.2 Let p > q ≥ 0, g(t) ∈ L1(a, b). For any t ∈ [a, b], then

I p0+ I
q
0+g(t)= I p+q

0+ g(t)= I q0+ I
p
0+g(t),

C Dp
0+ I

p
0+g(t)=g(t),C Dq

0+ I
p
0+g(t)= I p−q

0+ g(t).

Let C[0, 1] denotes the space of all continuous functions. Set Uα = {u(t)|u(t) ∈
C[0, 1] and C Dαu(t) ∈ C[0, 1]}. In order to prove our main results, we need the
following lemmas.

Lemma 2.3 Let 1 < α < 2, 0 ≤ ξ < 1, 0 ≤ η ≤ 1, θ > 0,�2 − �1ξ �= 0. For any
y(t) ∈ C[0, 1], then the unique solution of the fractional boundary value problem

{C Dα
0+u(t) = y(t), t ∈ [0, 1],

u(ξ) = 0, u(1) = I θ
0+u(η),

(2.1)

is given in Uα by

u(t)=�3(ξ−t)I α
0+ y(1)+�3(t−ξ)I α+θ

0+ y(η)+�3(�1t−�2)I
α
0+ y(ξ) + I α

0+ y(t),

(2.2)

where �1 = (1 − ηθ

�(θ+1) ),�2 = (1 − ηθ+1

�(θ+2) ),�3 = 1
�2−�1ξ

.
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Proof Applying Lemma 2.1, the equation C Dα
0+u(t) = y(t) in (2.1) means

u(t) = c1 + c2t + I α
0+ y(t). (2.3)

Using the condition u(ξ) = 0 and (2.3), we have

c1 + c2ξ = −I α
0+ y(ξ). (2.4)

Using Lemma 2.2 and (2.3), we have

I θ
0+u(t) = c1

tθ

�(θ + 1)
+ c2

tθ+1

�(θ + 2)
+ I α+θ

0+ y(t).

Moreover, the fractional integral condition u(1) = I θ
0+u(η) leads to

c1 + c2 + I α
0+ y(1) = c1

ηθ

�(θ + 1)
+ c2

ηθ+1

�(θ + 2)
+ I α+θ

0+ y(η),

that is

�1c1 + �2c2 = I α+θ
0+ y(η) − I α

0+ y(1). (2.5)

Combining (2.4) with (2.5), we obtain

c1 = �3[ξ I α
0+ y(1) − �2 I

α
0+ y(ξ) − ξ I α+θ

0+ y(η)],
c2 = �3[I α+θ

0+ y(η) + �1 I
α
0+ y(ξ) − I α

0+ y(1)].

Substituting c1 and c2 to (2.3), we obtain (2.2). The proof is completed.
Let X = {u(t)|u(t) ∈ C[0, 1] and C Dρ1u(t) ∈ C[0, 1]} be a Banach space

endowed with the norm ‖u‖X = max
t∈J

|u(t)| +max
t∈J

|C Dρ1u(t)|, and Y = {v(t)|v(t) ∈
C[0, 1] and C Dρ2v(t) ∈ C[0, 1]} be a Banach space endowed with the norm
‖v‖Y = max

t∈J
|v(t)| + max

t∈J
|C Dρ2v(t)|. The product space (X × Y, ‖(u, v)‖X×Y ) is

also a Banach space with the norm ‖(u, v)‖X×Y = ‖u‖X + ‖v‖Y .
Define the operator T : X × Y → X × Y by

T (u, v)(t) = (T1(u, v)(t), T2(u, v)(t)), (2.6)

where

Ti (u, v)(t) = �i3(ξi − t)I αi
0+ fi (1, u(1), v(1),C Dρ1u(1),C Dρ2v(1))

+�i3(t − ξi )I
αi+θi
0+ fi (ηi , u(ηi ), v(ηi ),

C Dρ1u(ηi ),
C Dρ2v(ηi ))

+�i3(�i1t − �i2)I
αi
0+ fi (ξi , u(ξi ), v(ξi ),

C Dρ1u(ξi ),
C Dρ2v(ξi ))

+ I αi
0+ fi (t, u(t), v(t),C Dρ1u(t),C Dρ2v(t)), i = 1, 2,
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and

�i1 =
(

1 − η
θi
i

�(θi + 1)

)

,�i2 =
(

1 − η
θi+1
i

�(θi + 2)

)

,

�i3 = 1

�i2 − �i1ξi
,�i2 − �i1ξi �= 0, i = 1, 2.

	

Remark 2.1

Ti (u, v)′(t) = −�i3 I
αi
0+ fi (1, u(1), v(1),C Dρ1u(1),C Dρ2v(1))

+�i3 I
αi+θi
0+ fi (ηi , u(ηi ), v(ηi ),

C Dρ1u(ηi ),
C Dρ2v(ηi ))

+�i3�i1 I
αi
0+ fi (ξi , u(ξi ), v(ξi ),

C Dρ1u(ξi ),
C Dρ2v(ξi ))

+ I αi−1
0+ fi (t, u(t), v(t),C Dρ1u(t),C Dρ2v(t)), i = 1, 2.

SetUα1 = {
u(t)|u(t) ∈ C[0, 1] and C Dα1u(t) ∈ C[0, 1]} andUα2 = {

v(t)|v(t) ∈
C[0, 1] and C Dα2v(t) ∈ C[0, 1]}.
Lemma 2.4 Let f1, f2 ∈ C([0, 1] × R

4,R). Then (u, v) ∈ Uα1 × Uα2 is a solution
of FDE (1.1) if and only if (u, v) ∈ X × Y is a solution of the operator equations
T (u, v) = (u, v).

Proof Let (u, v) ∈ Uα1 × Uα2 be a solution of FDE (1.1). Applying Lemma 2.3 and
(2.6), we can obtain immediately (u, v) ∈ X×Y is a solution of the operator equations
T (u, v) = (u, v). Conversely, let (u, v) ∈ X×Y is a solution of the operator equations
T (u, v) = (u, v). That is,

u(t) = �13(ξ1 − t)I α1
0+ f1(1, u(1), v(1),C Dρ1u(1),C Dρ2v(1))

+�13(t − ξ1)I
α1+θ1
0+ f1(η1, u(η1), v(η1),

C Dρ1u(η1),
C Dρ2v(η1))

+�13(�11t − �12)I
α1
0+ f1(ξ1, u(ξ1), v(ξ1),

C Dρ1u(ξ1),
C Dρ2v(ξ1))

+ I α1
0+ f1(t, u(t), v(t),C Dρ1u(t),C Dρ2v(t)),

v(t) = �23(ξ2 − t)I α2
0+ f2(1, u(1), v(1),C Dρ1u(1),C Dρ2v(1))

+�23(t − ξ2)I
α2+θ2
0+ f2(η1, u(η1), v(η1),

C Dρ1u(η1),
C Dρ2v(η1))

+�23(�21t − �22)I
α2
0+ f2(ξ1, u(ξ1), v(ξ1),

C Dρ1u(ξ1),
C Dρ2v(ξ1))

+ I α2
0+ f2(t, u(t), v(t),C Dρ1u(t),C Dρ2v(t)).
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Noticing C Dαi tαi−m = 0,m = 1, 2, . . . , N , where N is the smallest integer greater
than or equal to αi . So, we have

C Dα1u(t) = C Dα1 [I α1
0+ f1(t, u(t), v(t),C Dρ1u(t)),C Dρ2v(t))]

= f1(t, u(t), v(t),C Dρ1u(t)),C Dρ2v(t)),
C Dα2v(t) = C Dα2 [I α2

0+ f2(t, u(t), v(t),C Dρ1u(t)),C Dρ2v(t))]
= f2(t, u(t), v(t),C Dρ1u(t)),C Dρ2v(t)).

By direct computation, we can verify easily that u(ξ1) = 0, u(1) = I θ1
0+u(η1), v(ξ2) =

0, v(1) = I θ2
0+v(η2). Therefore, (u, v) ∈ Uα1 × Uα2 is a solution of FDE (1.1). The

proof is completed. 	

Lemma 2.5 [see [27]] (Leray–Schauder nonlinear alternative) Let F be a Banach
space and � be a bounded open subset of F, 0 ∈ �, T : � → F be a completely
continuous operator. Then, either there exists x ∈ ∂�, λ > 1 such that T (x) = λx,
or there exists a fixed point x∗ ∈ �.

3 Main results

In the following subsection, we establish our main results for FDE (1.1) by using a
variety of fixed point theorems. For convenience, we set

Ai = |�i3|(ξi + 1)+|�i3|(|�i1|+|�i2|)ξαi
i + 1

�(αi + 1)
+ |�i3|(ξi + 1)ηαi+θi

i

�(αi + θi + 1)
, i = 1, 2,

Bi = 1

�(2 − ρi )

( |�i3| + |�i3�i1|ξαi
i

�(αi + 1)
+ 1

�(αi )
+ |�i3|ηαi+θi

i

�(αi + θi + 1)

)

, i = 1, 2,

Cik =
(
Ai + Bi

)
aik, i = 1, 2, k = 1, 2, 3, 4, 5,

Dik =
(
Ai + Bi

)
bik, i = 1, 2, k = 1, 2, 3, 4, 5,

Ei = max
{
Di1, Di2, Di3, Di4, Di5

}
, i = 1, 2,

Fik =
(
Ai + Bi

)
cik, i = 1, 2, k = 1, 2, 3, 4.

The first result is based on the Schauder fixed point theorem.

Theorem 3.1 Assume that there exist positive constants aik ∈ (0,+∞)(i = 1, 2, k =
1, 2, 3, 4, 5) such that the following condition is satisfied

(H1) | fi (t, x1, x2, x3, x4)| ≤
4∑

k=1

aik |xk |τik + ai5, 0 < τik < 1.

Then FDE (1.1) has at least one solution.
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Proof First, define a ball in Banach space X × Y as

BR = {(u, v)|(u, v) ∈ X × Y, ‖(u, v)‖X×Y ≤ R}, (3.1)

where

R ≥ max
{
(10Ci1)

1
1−τi1 , (10Ci2)

1
1−τi2 , (10Ci3)

1
1−τi3 , (10Ci4)

1
1−τi4 , 10Ci5, i = 1, 2

}
.

Now we prove that T : BR → BR . For any (u, v) ∈ BR , applying Definition 2.2 and
the relation condition (H1), we have

|T1(u, v)(t)|
≤ |�13(ξ1 − t)|I α1

0+| f1(1, u(1), v(1),C Dρ1u(1),C Dρ2v(1))|
+ |�13(t − ξ1)|I α1+θ1

0+ | f1(η1, u(η1), v(η1),
C Dρ1u(η1),

C Dρ2v(η1))|
+ |�13(�11t − �12)|I α1

0+| f1(ξ1, u(ξ1), v(ξ1),
C Dρ1u(ξ1),

C Dρ2v(ξ1))|
+ I α1

0+| f1(t, u(t), v(t),C Dρ1u(t),C Dρ2v(t))|

≤
[ |�13|(ξ1 + 1)

�(α1)

∫ 1

0
(1 − s)α1−1ds + |�13|(ξ1 + 1)

�(α1 + θ1)

∫ η1

0
(η1 − s)α1+θ1−1ds

+|�13|(|�11| + |�12|)
�(α1)

∫ ξ1

0
(ξ1 − s)α1−1ds + 1

�(α1)

∫ t

0
(t − s)α1−1ds

]

×
( 4∑

k=1

a1k R
τ1k + a15

)

≤ A1

( 4∑

k=1

a1k R
τ1k + a15

)

. (3.2)

On the other hand, we have

C Dρ1T1(u, v)(t) = 1

�(1 − ρ1)

∫ t

0

T1(u, v)′(s)
(t − s)ρ1

ds. (3.3)

By Remak 2.1, using similar computation as getting (3.2), we have

|T1(u, v)′(t)|
≤

[ |�13|
�(α1)

∫ 1

0
(1 − s)α1−1ds + |�13|

�(α1 + θ1)

∫ η1

0
(η1 − s)α1+θ1−1ds

+|�13�11|
�(α1)

∫ ξ1

0
(ξ1 − s)α1−1ds + 1

�(α1 − 1)

∫ t

0
(t − s)α1−2ds

]

×
( 4∑

k=1

a1k R
τ1k + a15

)
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≤
( |�13| + |�13�11|ξα1

1

�(α1 + 1)
+ 1

�(α1)
+ |�13|ηα1+θ1

1

�(α1 + θ1 + 1)

)

×
( 4∑

k=1

a1k R
τ1k + a15

)

.

(3.4)

Consequently by (3.3) and (3.4), we have

|C Dρ1T1(u, v)(t)| ≤ 1

�(1 − ρ1)

∫ t

0
(t−s)−ρ1ds ×

( |�13| + |�13�11|ξα1
1

�(α1 + 1)
+ 1

�(α1)

+ |�13|ηα1+θ1
1

�(α1 + θ1 + 1)

)

×
( 4∑

k=1

a1k R
τ1k + a15

)

≤ B1

( 4∑

k=1

a1k R
τ1k + a15

)

. (3.5)

From (3.2) and (3.5), we have

||T1(u, v)||X ≤
4∑

k=1

C1k R
τ1k + C15 ≤ 1

10
R + 1

10
R + 1

10
R + 1

10
R + 1

10
R = R

2
.

Similarly, one can obtain

||T2(u, v)||Y ≤
4∑

k=1

C2k R
τ2k + C25 ≤ 1

10
R + 1

10
R + 1

10
R + 1

10
R + 1

10
R = R

2
.

That is

||T (u, v)||X×Y = ||T1(u, v)||X + ||T2(u, v)||Y ≤ R.

Thus, we have T : BR → BR .
Notice that T1(u, v)(t), T2(u, v)(t),C Dρ1T1(u, v)(t),C Dρ2T2(u, v)(t) are contin-

uous on [0, 1]. Thus, operator T is also continuous.
Now we show that T is equicontinuous. For this we fixed

Mi = max
t∈[0,1]

{| fi (t, u(t), v(t),C Dρ1
0+u(t)),C Dρ2

0+v(t))|}, i = 1, 2.

for any (u, v) ∈ BR . Let t1, t2 ∈ [0, 1](t1 < t2), we have

|T1(u, v)(t2) − T1(u, v)(t1)|
≤ M1

[ |�13|(t2 − t1)

�(α1)

∫ 1

0
(1 − s)α1−1ds + |�13|(t2 − t1)

�(α1 + θ1)

∫ η1

0
(η1 − s)α1+θ1−1ds

+|�13�11|(t2 − t1)

�(α1)

∫ ξ1

0
(ξ1 − s)α1−1ds

]
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+ M1

[
1

�(α1)

∫ t1

0
[(t2 − s)α1−1 − (t1 − s)α1−1]ds + 1

�(α1)

∫ t2

t1
(t2 − s)α1−1ds

]

≤ M1|�13|
[
1 + ξ

α1
1 |�11|

�(α1 + 1)
+ η

α1+θ1
1

�(α1 + θ1 + 1)

]

(t2 − t1) + M1

�(α1 + 1)
(tα12 − tα11 ).

(3.6)

On the other hand, we have

|C Dρ1T1(u, v)(t2) −C Dρ1T1(u, v)(t1)|
= 1

�(1 − ρ1)
|
∫ t2

0

T1(u, v)′(s)
(t2 − s)ρ1

ds −
∫ t1

0

T1(u, v)′(s)
(t1 − s)ρ1

ds|

≤ 1

�(1 − ρ1)

[ ∫ t1

0

(t2−s)ρ1−(t1−s)ρ1

(t1 − s)ρ1(t2 − s)ρ1
|T1(u, v)′(s)|ds +

∫ t2

t1

|T1(u, v)′(s)|
(t2 − s)ρ1

ds

]

,

(3.7)

where

|T1(u, v)′(s)| ≤
( |�13| + |�13�11|ξα1

1

�(α1 + 1)
+ 1

�(α1)
+ |�13|ηα1+θ1

1

�(α1 + θ1 + 1)

)

M1.

From (3.6) and (3.7), we have

|C Dρ1T1(u, v)(t2) −C Dρ1T1(u, v)(t1)|
≤

( |�13| + |�13�11|ξα1
1

�(α1 + 1)
+ 1

�(α1)
+ |�13|ηα1+θ1

1

�(α1 + θ1 + 1)

)
M1

�(1 − ρ1)

×
[ ∫ t1

0

(t2 − s)ρ1 − (t1 − s)ρ1

(t2 − s)ρ1(t1 − s)ρ1
ds +

∫ t2

t1

1

(t2 − s)ρ1
ds

]

≤ B1M1
[
2(t2 − t1)

1−ρ1 + t1−ρ1
2 − t1−ρ1

1

]
. (3.8)

Analogously, one can prove that

|T2(u, v)(t2) − T2(u, v)(t1)| ≤ M2|�23|
[
1 + ξ

α2
2 |�21|

�(α2 + 1)
+ η

α2+θ2
2

�(α2 + θ2 + 1)

]

×(t2 − t1) + M2

�(α2 + 1)
(tα22 − tα21 ), (3.9)

|C Dρ2T2(u, v)(t2) −C Dρ2T2(u, v)(t1)| ≤ B2M2

[
2(t2 − t1)

1−ρ2 + t1−ρ2
2 − t1−ρ2

1

]
.

(3.10)

In (3.6), (3.8), (3.9) and (3.10), letting t1 → t2, then

|T1(u, v)(t2) − T1(u, v)(t1)| → 0, |C Dρ1T1(u, v)(t2) −C Dρ1T1(u, v)(t1)| → 0,

|T2(u, v)(t2) − T2(u, v)(t1)| → 0, |C Dρ2T2(u, v)(t2) −C Dρ2T2(u, v)(t1)| → 0.
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So

||T1(u, v)(t2) − T1(u, v)(t1)||X → 0, ||T2(u, v)(t2) − T2(u, v)(t1)||Y → 0.

That is, as t1 → t2,

||T (u, v)(t2) − T (u, v)(t1)||X×Y → 0.

Therefore it follows from the above proof that T (BR) is an equicontinuous set. Also,
it is uniformly bounded as T (BR) ⊂ BR . By means of the Arzelà–Ascoli theorem, we
conclude that T is a completely continuous operator. Hence, applying the Schauder
fixed theorem, FDE (1.1) has at least one solution (u, v) in BR . This proof is completed.

	

Remark 3.1 The condition (H1) can be replaced by the following condition

(H2) | fi (t, x1, x2, x3, x4)| ≤
4∑

k=1

aik |xk |τik , τik > 1.

and the conclusion of Theorem 3.1 remains true. Noticing, some additional restriction
about R in (3.1) should be replaced by the following restriction

0< R<min

{(
1

8Ci1

) 1
τi1−1

,

(
1

8Ci2

) 1
τi2−1

,

(
1

8Ci3

) 1
τi3−1

,

(
1

8Ci4

) 1
τi4−1

, i =1, 2

}

.

So, repeating arguments similar to proof of Theorem 3.1, we can obtain the same
conclusion.

The second result is based on the Leray–Schauder nonlinear alternative.

Theorem 3.2 Assume that there exist positive constants bik ∈ (0,+∞))(i =
1, 2, k = 1, 2, 3, 4, 5) and functions φik ∈ C([0,+∞), (0,+∞))(i = 1, 2, k =
1, 2, 3, 4) nondecreasing on [0,+∞) and L > 0 such that the following conditions
are satisfied

(H3) | fi (t, x1, x2, x3, x4)| ≤
4∑

k=1

bikφik(|xk |) + bi5, i = 1, 2,

(H4) E1(

4∑

k=1

φ1k(L) + 1) + E2(

4∑

k=1

φ2k(L) + 1) < L .

Then FDE (1.1) has at least one solution.

Proof First we show that T is completely continuous. It is obvious that T is continuous
since fi are continuous. For a positive number L > 0, let BL = {(u, v)|(u, v) ∈
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X × Y, ‖(u, v)‖X×Y ≤ L} be a bounded ball in X × Y . We shall prove that T (BL) is
relatively compact.

For (u, v) ∈ T (BL), similar computation as (3.2) and (3.5) yields

|T1(u, v)(t)| ≤ A1

( 4∑

k=1

b1kφ1k(L) + b15

)

, (3.11)

|C Dρ1T1(u, v)(t)| ≤ B1

( 4∑

k=1

b1kφ1k(L) + b15

)

. (3.12)

Hence

||T1(u, v)||X ≤ (A1 + B1)

( 4∑

k=1

b1kφ1k(L) + b15

)

=
4∑

k=1

D1kφ1k(L) + D15.

(3.13)

Similarly, one can obtain

||T2(u, v)||Y ≤
4∑

k=1

D2kφ2k(L) + D25. (3.14)

Combining (3.13) with (3.14), we get

||T (u, v)||X×Y = ||T1(u, v)||X + ||T2(u, v)||Y ≤
( 4∑

k=1

D1kφ1k(L) + D15

)

+
( 4∑

k=1

D2kφ2k(L) + D25

)

. (3.15)

Hence, T (BL) is uniformly bounded through (3.15). Next as the similar computation
as (3.6)–(3.10) yields that T (BL) is an equicontinuous set. By means of the Arzelà–
Ascoli theorem, we conclude that T is a completely continuous operator.

Nowwe apply the Leray–Schauder nonlinear alternative (Lemma 2.5) to prove that
T has at least one solution in X × Y .

For (u, v) ∈ ∂BL , such that (u, v) = λT (u, v), 0 < λ < 1. By (3.11) and (3.12),
we have

|u(t)| = λ|T1(u, v)(t)| ≤ |T1(u, v)(t)| ≤ A1

[ 4∑

k=1

b1kφ1k(L) + b15

]

,

|C Dρ1(u, v)(t)| = λ|C Dρ1T1(u, v)(t)| ≤ |C Dρ1T1(u, v)(t)|

≤ B1

[ 4∑

k=1

b1kφ1k(L) + b15

]

.

123



www.manaraa.com

Solvability of a coupled system 85

Hence

||u||X ≤ (A1 + B1)

[ 4∑

k=1

b1kφ1k(L) + b15

]

=
4∑

k=1

D1kφ1k(L) + D15

≤ E1

[ 4∑

k=1

φ1k(L) + 1

]

. (3.16)

Similarly, one can obtain

||v||Y ≤ E2

[ 4∑

k=1

φ2k(L) + 1

]

. (3.17)

Combining (3.16), (3.17) with the condition (H4), we get

‖(u, v)‖X×Y =||u||X +||v||Y ≤E1

( 4∑

k=1

φ1k(L) + 1

)

+E2

( 4∑

k=1

φ2k(L) + 1

)

<L ,

(3.18)

this contradicts the fact (u, v) ∈ ∂BL . By Lemma 2.5 we conclude that T has a fixed
point (u, v) ∈ BL and then FDE (1.1) has at least one solution in X × Y . 	

Corollary 3.1 Assume that there exist positive constants bik ∈ (0,+∞))(i =
1, 2, k = 1, 2, 3, 4, 5) and L > 0 such that the following conditions are satisfied

(H5) | fi (t, x1, x2, x3, x4)| ≤
4∑

k=1

bik |xk | + bi5, i = 1, 2,

(H6) (E1 + E2)(4L + 1) < L .

Then FDE (1.1) has at least one solution.

Remark 3.2 We obtained the existence of solutions for nonlinear FDE (1.1) by The-
orem 3.1 and Theorem 3.2. Some growth conditions

| fi (t, x1, x2, x3, x4)| ≤
4∑

k=1

aik |xk |τik + ai5

is given through three cases: In (H1), 0 < τik < 1; In (H2), τik > 1, for the sake
of simplicity, here ai5 = 0; In (H5), τik = 1, and some additional restriction (H6)

is given. Obviously, it is easy to know that the conclusion of Theorem 3.2 contains
result of Theorem 3.1, but the condition of Theorem 3.1 is verified easily and more
convenient to apply, see Example 4.1.

The uniqueness of solutions is based on the Banach contraction principle.
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Theorem 3.3 Assume that there exist positive constants cik ∈ (0,+∞))(i =
1, 2, k = 1, 2, 3, 4) such that the following conditions are satisfied, for all t ∈ [0, 1]
and x1, x2, x3, x4, y1, y2, y3, y4 ∈ R,

(H7) | fi (t, x1, x2, x3, x4) − fi (t, y1, y2, y3, y4)| ≤
4∑

k=1

cik |xk − yk |, i = 1, 2,

(H8) H =
4∑

k=1

(F1k + F2k) < 1.

Then FDE (1.1) has a unique solution.

Proof Define sup
t∈[0,1]

fi (t, 0, 0, 0, 0) = Gi < ∞, i = 1, 2 and take

r ≥ G ′
1 + G ′

2

1 − H
,

where G ′
i =

(
Ai + Bi

)
Gi , i = 1, 2.

First, we show that T (Br ) ⊂ Br , where Br = {(u, v)|(u, v) ∈ X × Y :
||(u, v)||X×Y ≤ r}. For (u, v) ∈ Br ,we have

|T1(u, v)(t)|
≤ |�13|(ξ1 + 1)I α1

0+
[
| f1(1, u(1), v(1),C Dρ1u(1),C Dρ2v(1))

− f1(1, 0, 0, 0, 0)| + | f1(1, 0, 0, 0, 0)|
]

+ |�13|(ξ1 + 1)I α1+θ1
0+

[
| f1(η1, u(η1), v(η1),

C Dρ1u(η1)),
C Dρ2v(η1))

− f1(η1, 0, 0, 0, 0)|
+ | f1(η1, 0, 0)|

]
+ |�13|(|�11|

+ |�12|)I α1
0+

[
| f1(ξ1, u(ξ1), v(ξ1),

C Dρ1u(ξ1)),
C Dρ2v(ξ1))

− f1(ξ1, 0, 0, 0, 0)| + | f1(ξ1, 0, 0, 0, 0)|
]

+ I α1
0+

[
| f1(t, u(t), v(t),C Dρ1u(t),C Dρ2u(t))

− f1(t, 0, 0, 0, 0)| + | f1(t, 0, 0, 0, 0)|
]

≤
[ |�13|(ξ1 + 1)

�(α1)

∫ 1

0
(1 − s)α1−1ds + |�13|(ξ1 + 1)

�(α1 + θ1)

∫ η1

0
(η1 − s)α1+θ1−1ds

+|�13|(|�11| + |�12|)
�(α1)

∫ ξ1

0
(ξ1 − s)α1−1ds + 1

�(α1)

∫ t

0
(t − s)α1−1ds

]
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×
[
(c11 + c13)||u||X + (c12 + c14)||v||Y + G1

]

≤ A1

[
(c11 + c13)||u||X + (c12 + c14)||v||Y + G1

]
. (3.19)

On the other hand, we have

|T1(u, v)′(t)| ≤
( |�13| + |�13�11|ξα1

1

�(α1 + 1)
+ 1

�(α1)
+ |�13|ηα1+θ1

1

�(α1 + θ1 + 1)

)

×
[
(c11 + c13)||u||X + (c12 + c14)||v||Y + G1

]
. (3.20)

Using (3.3) and (3.20), we obtain

|C Dρ1T1(u, v)(t)| ≤ B1

[
(c11 + c13)||u||X + (c12 + c14)||v||Y + G1

]
. (3.21)

Combining (3.19) and (3.21), we get

||T1(u, v)||X ≤ (F11 + F13)||u||X + (F12 + F14)||v||Y + G ′
1 ≤ r

4∑

k=1

F1k + G ′
1.

Similarly, one has

||T2(u, v)||Y ≤ (F21 + F23)||u||X + (F22 + F24)||v||Y + G ′
2 ≤ r

4∑

k=1

F2k + G ′
2.

Consequently

||T (u, v)||X×Y = ||T1(u, v)||X + ||T2(u, v)||Y ≤ Hr + G ′
1 + G ′

2 ≤ r.

Now for any (u2, v2), (u1, v1) ∈ Br ,we have

|T1(u2, v2)(t) − T1(u1, v1)(t)|
≤

[ |�13|(ξ1 + 1)

�(α1)

∫ 1

0
(1 − s)α1−1ds + |�13|(ξ1 + 1)

�(α1 + θ1)

∫ η1

0
(η1 − s)α1+θ1−1ds

+|�13|(|�11| + |�12|)
�(α1)

∫ ξ1

0
(ξ1 − s)α1−1ds + 1

�(α1)

∫ t

0
(t − s)α1−1ds

]

×
[
(c11 + c13)||u2 − u1||X + (c12 + c14)||v2 − v1||Y

]

≤ A1

[
(c11 + c13)||u2 − u1||X + (c12 + c14)||v2 − v1||Y

]
, (3.22)
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and

|C Dρ2T1(u2, v2)(t) −C Dρ2T1(u1, v1)(t)|
≤ B1

[
(c11 + c13)||u2 − u1||X + (c12 + c14)||v2 − v1||Y

]
. (3.23)

Combining (3.22) and (3.23), we get

||T1(u2, v2) − T1(u1, v1)||X ≤ (F11 + F13)||u2 − u1||X + (F12 + F14)||v2 − v1||Y .

Similarly, one has

||T2(u2, v2) − T2(u1, v1)||Y ≤ (F21 + F23)||u2 − u1||X + (F22 + F24)||v2 − v1||Y .

Therefore

||T (u2, v2) − T (u1, v1)||X×Y ≤ H
[
||u2 − u1||X + ||v2 − v1||Y

]
.

Since H < 1, T is a contraction operator. So, using the Banach contraction principle,
the operator T has a unique fixed point, which is the unique solution of FDE (1.1). 	


4 Some examples

In this section, in order to illustrate our results, we consider the following three exam-
ples.

Example 4.1 Consider the following coupled system of nonlinear FDEwith fractional
integral conditions

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C D
3
2
0+u(t) = a11(u(t))τ11 + a12(v(t))τ12 + a13(C D

1
4
0+u(t))τ13

+ a14(C D
1
3
0+v(t))τ14 + a15, t ∈ (0, 1),

C D
5
4
0+v(t) = a21(u(t))τ21 + a22(v(t))τ22 + a23(C D

1
4
0+u(t))τ23

+ a24(C D
1
3
0+v(t))τ24 + a25, t ∈ (0, 1),

u( 1
10 ) = 0, u(1) = I

5
4
0+u( 15 ),

v( 1
16 ) = 0, v(1) = I

1
3
0+v( 18 ),

(4.1)

where 0 < τi j < 1(i = 1, 2; j = 1, 2, 3, 4) and aik(i = 1, 2; k = 1, 2, 3, 4, 5) are
positive constants. Obviously, it follows from Theorem 3.1 that FDE (4.1) has at least
one solution.
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Example 4.2 Consider the following coupled system of nonlinear FDEwith fractional
integral conditions

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C D
3
2
0+u(t) = u2

200 + v2

100(1+|v|) + 1
50 (

C D
1
2
0+u(t))

+ t
500 (

C D
1
2
0+v(t))2 + (1−t)2

100 , t ∈ (0, 1),

7C D
5
4
0+v(t) = (1−t)u4

100(1+u2)

+ v2

200 + t2
100 (

C D
1
2
0+u(t))3 + 1

200 (
C D

1
2
0+v(t)) + (1+t)2

400 , t ∈ (0, 1),

u( 14 ) = 0, u(1) = I
1
3
0+u( 12 ),

u( 12 ) = 0, u(1) = I
5
4
0+u( 13 ),

(4.2)

where α1 = 3
2 , α2 = 5

4 , ρ1 = ρ2 = 1
2 , ξ1 = 1

4 , ξ2 = 1
2 , η1 = 1

2 , η2 = 1
3 , θ1 =

1
3 , θ2 = 5

4 . By (4.2), we have

| f1(t, x1, x2, x3, x4)| = x21
200

+ x22
100(1 + |x2|) + x3

50
+ t x24

500
+ (1 − t)2

100

≤ |x1|2
200

+ |x2|
100

+ |x3|
50

+ |x4|2
500

+ 1

100
= a11φ11(|x1|)

+ a12φ12(|x2|)+a13φ13(|x3|)+a14φ14(|x4|)+a15,

| f2(t, x1, x2, x3, x4)| = (1 − t)x41
100(1 + x21 )

+ x22
200

+ t2|x3|3
100

+ x4
200

+ (1 + t)2

400

≤ x21
100

+ x22
200

+ |x3|3
100

+ |x4|
200

+ 1

100
= a21φ21(|x1|)

+ a22φ22(|x2|) + a23φ23(|x3|) + a24φ24(|x4|) + a25,

where b11 = 1
200 , b12 = 1

100 , b13 = 1
50 , b14 = 1

500 , b15 = 1
100 , φ11(|x1|) = |x1|2,

φ12(|x2|) = |x2|, φ13(|x3|) = |x3|, φ14(|x4|) = |x4|2, b21 = 1
100 , b22 = 1

200 ,

b23 = 1
100 , b24 = 1

200 , b25 = 1
100 , φ21(|x1|) = |x1|2, φ22(|x2|) = |x2|2, φ23(|x3|) =

|x3|3, φ24(|x4|) = |x4|. Let us evaluate [E1(
4∑

k=1
φ1k(L)+1)+E2(

4∑

k=1
φ2k(L)+1)−L].

By direct calculation, we can obtain that

�11 = 0.1110, �12 = 0.6666, �13 = 1.5653,

�21 = 0.7764, �22 = 0.9669, �23 = 1.7280,

A1 = 1.9047, A2 = 3.4556, B1 = 2.9083,

B2 = 3.5656, C11 = 0.0241, C12 = 0.0482,

D13 = 0.0964, D14 = 0.0096, D15 = 0.0482,

D21 = 0.0702, D22 = 0.0351, D23 = 0.0702,

D24 = 0.0351, D25 = 0.0702, E1 = 0.0964, E2 = 0.0702.
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Then E1
( 4∑

k=1
φ1k(L)+1

)+E2
( 4∑

k=1
φ2k(L)+1

)−L = 0.0964×5+0.0702×5−1 =
−0.167 < 0 for L = 1. Theorem 3.2 implies that FDE (4.2) has at least one solution.

Example 4.3 Consider the following coupled system of nonlinear FDEwith fractional
integral conditions

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

C D
3
2
0+u(t) = 1

40u(t) + 3
50v(t)+ 3

100
C
D

1
2
0+u(t)+ 7

200
C
D

1
2
0+v(t) + sin t, t ∈ (0, 1),

C D
5
4
0+v(t)= 1

300u(t)+ 1
600v(t)+ 3

200
C
D

1
2
0+u(t)+ 3

100
C
D

1
2
0+v(t)+ t

10 , t ∈ (0, 1),

u( 14 ) = 0, u(1) = I
1
3
0+u( 12 ),

v( 12 ) = 0, v(1) = I
5
4
0+v( 13 ),

(4.3)

where α1 = 3
2 , α2 = 5

4 , ρ1 = ρ2 = 1
2 , ξ1 = 1

4 , ξ2 = 1
2 , η1 = 1

2 , η2 = 1
3 , θ1 =

1
3 , θ2 = 5

4 . By (4.3), we have

f1(t, x1, x2, x3, x4) = 1

40
x1 + 3

50
x2 + 3

100
x3 + 7

200
x4 + sin t,

f2(t, x1, x2, x3, x4) = 1

300
x1 + 1

600
x2 + 3

200
x3 + 3

100
x4 + t

10
,

and

| f1(t, x1, x2, x3, x4) − f1(t, y1, y2, y3, y4)|
≤ 1

40
|x1 − y1| + 3

50
|x2 − y2| + 3

100
|x3 − y3| + 7

200
|x4 − y4|,

| f2(t, x1, x2, x3, x4) − f2(t, y1, y2, y3, y4)|
≤ 1

300
|x1 − y1| + 1

600
|x2 − y2| + 3

200
|x3 − y3| + 3

100
|x4 − y4|.

Combining with the calculation result of (4.2), by direct calculation, we can obtain
that

F11 = 0.1001, F12 = 0.2404, F13 = 0.1201, F14 = 0.1401,

F21 = 0.0234, F22 = 0.0117, F23 = 0.1053, F24 = 0.2106.

Hence, H = 0.9517 < 1. Theorem 3.3 implies that FDE (4.3) has a unique solution.
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